A Novel Hybrid Deep Learning Approach for Brain Tumor Classification from MRI Images with Grad-CAM Interpretability
Conference paper

Early and precise diagnosis of brain tumors is essential for successful treatment planning and improved patient outcomes. This paper introduces a novel hybrid deep model that incorporates DenseNet121, a convolutional neural network (CNN), and the Swin Transformer, a vision transformer model, by feature-level fusion to classify brain tumors from magnetic resonance imaging (MRI) scans. The suggested method provides a more discriminative and better representation by uniting the global context capability of the Transformer model with the local feature extraction capability of the CNN model. The suggested method was trained and assessed on a publicly available brain MRI dataset of four classes: glioma, meningioma, pituitary tumor, and no tumor. Experimental results indicate that the proposed approach outperforms many baseline models including VGG16, MobileNetV2, and AlexNet with an accuracy of 99.39%, precision of 99.36%, recall of 99.34%, and F1-score of 99.35%. Grad-CAM was utilized to visualize class-discriminative regions in the MRI scans to enhance interpretability, hence validating the model's emphasis on tumor-relevant regions. These outcomes prove the efficacy of coupling Transformer and CNN architectures in obtaining accurate and interpretable brain tumor classification from MRI scans.

Fathi Sidig Mohamed Gasir, (12-2025), Jember, Indonesia: 2nd Beyond Technology Summit on Informatics International Conference (BTS-I2C), 1-10

Artificial Immune System for Fuzzy Backpropagation Neural Networks Optimization
Journal Article

 Fuzzy Neural Networks (FNNs) enhance conventional Artificial Neural Networks (ANNs) by incorporating fuzzy membership functions, which enable the handling of uncertainty, ambiguity, and imprecise information. While Fuzzy Backpropagation Neural Networks (FBNNs) improve classification performance across noisy datasets, the effectiveness of fuzzification heavily depends on the proper tuning of membership function parameters—typically optimized manually. This paper presents a novel Artificial Immune System framework for optimizing Fuzzy Backpropagation Neural Networks used in the classification of biological image data. The approach integrates a fuzzy min–max fuzzification layer with a feed-forward backpropagation network and applies an optimization version of an Artificial Immune Network model, derived from opt-aiNet, to tune trapezoidal membership functions. Experimental results confirm that the proposed immune-driven optimization is an effective technique for enhancing FBNN robustness and generalization.


Fathi Sidig Mohamed Gasir, (12-2025), Academy journal for Basic and Applied Sciences (AJBAS) Vol. 6 # 1: Libyan Academy, 2 (7), 1-10

Study of Conformity Assessment in Libya, with Insights from the Cement Industry
Journal Article

Abstract— This study examines the current state of conformity assessment (CA) in Libya, with a specific focus on the cement manufacturing sector as a case study. Conformity assessment, encompassing testing, inspection, certification, and accreditation, plays a critical role in ensuring product quality, safety, and market access. Libya faces challenges in implementing effective CA practices, hindering its economic diversification. This research evaluates stakeholder awareness, infrastructure adequacy, legal/institutional frameworks, and alignment with international standards using a mixed-methods approach. A stakeholder survey (N=54) and qualitative analysis of Libyan legal and regulatory documents were employed. Key findings reveal nominal CA awareness (82.69%), yet practical implementation gaps exist due to inadequate infrastructure (18.8% of respondents citing this as an obstacle), weak enforcement (18.8%), and limited technical expertise. The cement sector showed low Quality Management Systems (QMS) adoption (48%) and inconsistent adherence to the Libyan Portland Cement Standard LNS 340:2009. While support for aligning with international standards is strong (average rating 4.04/5), obstacles like lack of awareness (31.1%) and technical expertise (30.2%) impede progress. The study proposes actionable recommendations to strengthen Libya’s CA system, including developing a unified national framework, investing in accredited laboratories, and promoting collaboration.

Keywords— Conformity Assessment, Cement Industry, Libya, Quality Standards, Economic Diversification, Stakeholder Awareness.

Abdelrazak Abdelmajid emhamed benjaber, Mohammed Rasem AlShadeed, (12-2025), الأكاديمية الليبية: الأكاديمية الليبية, 7 (2), 1-7

نحو إطار ذكي لاتخاذ القرار في إدارة المشاريع الهندسية باستخدام الذكاء الاصطناعي
مقال في مجلة علمية

تواجه المشاريع الهندسية تحديات متزايدة ناجمة عن بيئات العمل المعقدة وتسارع وتيرة الابتكار التكنولوجي، الأمر الذي يستلزم تبني أساليب متقدمة لاتخاذ القرار تتسم بالدقة والسرعة. تهدف هذه الدراسة إلى تطوير إطار عمل ذكي لدعم عملية اتخاذ القرار في إدارة المشاريع الهندسية من خلال دمج تقنيات الذكاء الاصطناعي وتحليلات البيانات ضمن بيئة مؤسسية شبه حقيقية.

اعتمد البحث على منهجية وصفية تحليلية مدعومة بخبرة ميدانية، حيث تم توظيف أدوات تحليل البيانات الضخمة وتقنيات التعلم الآلي ضمن بيئة Orange Data Mining لبناء نماذج تنبؤية شملت الانحدار اللوجستي (Logistic Regression)، وآلة الدعم الناقل (SVM)، والغابة العشوائية (Random Forest)، ونايف بايز (Naïve Bayes). تم تقييم النماذج باستخدام مؤشرات أداء متعددة، وأظهرت النتائج تفوق نموذج الغابة العشوائية بدقة تجاوزت 95% وقدرة عالية على التنبؤ بالمخاطر والانحرافات المحتملة في المشاريع.

تؤكد النتائج قدرة الإطار المقترح على تحسين دقة القرارات، وتقليل الانحرافات الزمنية والفنية، وتحسين الكفاءة التشغيلية، وتمكين الكشف المبكر عن المشكلات. وتوصي الدراسة باعتماد نموذج الغابة العشوائية كمرجعية أساسية للتنبؤ بمخرجات المشاريع، والاستثمار في إنشاء مستودعات بيانات مؤسسية، وتدريب الكوادر على أدوات الذكاء الاصطناعي لضمان دعم اتخاذ القرار في الزمن الفعلي وتحقيق أداء مستدام للمشاريع.

أ. سالم عمران بلعيد، عبدالرزاق عبدالمجيد امحمد بن جابر، (10-2025)، طرابلس: جامعة المعرفة للعلوم الانسانية والتطبيقية، 1 (1)، 187-198

Design And Hydrodynamic Performance Analysis of a Marine Water Jet Using SolidWorks and CFD Simulation
Journal Article

Marine water jet propulsion systems require optimized nozzle and duct geometries to maximize thrust and efficiency, yet design improvements are often limited by the lack of integrated hydrodynamic analysis. This study aimed to design an efficient marine water jet and evaluate its hydrodynamic performance through combined CAD modeling and CFD simulation. A three-dimensional model of the propulsion system was developed in SolidWorks, incorporating optimized nozzle and internal duct geometry. Computational Fluid Dynamics (CFD) simulations were performed to analyze velocity fields, pressure distributions, and thrust output under defined fluid properties and boundary conditions. Both the complete jet system (including a free-surface water interface) and a simplified nozzle-only configuration was examined. Simulations revealed clear correlations between geometric parameters and performance, identifying configurations that improved energy conversion and reduced wall friction. The optimized design achieved higher thrust efficiency compared to baseline geometries. Integrated CAD–CFD analysis provides a robust framework for marine water jet design, enabling targeted geometry refinements that enhance hydrodynamic performance. The findings support future development of high-efficiency propulsion systems for marine applications. 

Madi Abdullah Naser Abdullrahman, (09-2025), African Journal of Advanced Pure and Applied Sciences (AJAPAS): ACADEMIA, 4 (3), 521-530

Numerical Evaluation of Corrosion-Induced Degradation in Reinforced Concrete Beams Using Finite Element Analysis in ABAQUS
Journal Article

Steel corrosion in reinforced concrete (RC) structures is a major concern in civil engineering, as it directly affects the safety, serviceability, and lifespan of infrastructures. This study focuses on understanding how corrosion-induced deterioration in steel reinforcement impacts the structural performance of concrete beams. In particular, it investigates how different levels of reinforcement loss influence the load-bearing capacity and failure mechanisms of RC beams under combined bending and shear. To achieve this, a numerical approach was adopted using the ABAQUS finite element software. Three beam models were developed, each representing a different degree of corrosion: intact reinforcement, 20% loss, and 25% loss in cross-sectional area. The models were designed to closely simulate the physical behavior of corroded beams, incorporating nonlinear material properties, bond degradation, and failure criteria. The findings reveal a clear decline in structural performance as corrosion severity increases. Beams with higher reinforcement loss exhibited reduced ultimate loads, increased deflections, and altered failure modes - particularly in shear-dominated regions. The simulation results aligned well with available experimental data, demonstrating the accuracy and reliability of the modeling approach. This research highlights the importance of early detection and quantification of corrosion damage in RC structures. By employing advanced finite element tools like ABAQUS, engineers can better predict structural degradation, evaluate safety margins, and plan timely interventions. The study provides valuable insights into infrastructure asset management and supports the development of effective maintenance strategies aimed at extending the service life of aging concrete structures exposed to aggressive environments.

KEYWORDS

Reinforcement, Deflection, Numerical, Analysis, ABAQUS, FE Modelling

Cite This Paper in IEEE or APA Citation Styles

(a). IEEE Format:

[1] Bashir Saleh , "Numerical Evaluation of Corrosion-Induced Degradation in Reinforced Concrete Beams Using Finite Element Analysis in ABAQUS," Civil Engineering and Architecture, Vol. 13, No. 5, pp. 3967 - 3974, 2025. DOI: 10.13189/cea.2025.130536.


(b). APA Format:

Bashir Saleh (2025). Numerical Evaluation of Corrosion-Induced Degradation in Reinforced Concrete Beams Using Finite Element Analysis in ABAQUS. Civil Engineering and Architecture, 13(5), 3967 - 3974. DOI: 10.13189/cea.2025.130536.

Bashir Ali Kalifa Saleh, (09-2025), Scopus: Elsevier, 13 (5), 3974-3967

مدى توفر متطلبات تطبيق إدارة الجودة الشاملة في المراكز البحثية
مقال في مجلة علمية

الملخص: تهدف هده الدراسة الي التعرف على متطلبات تطبيق إدارة الجودة الشاملة في المراكز البحثية، المركز الليبي التقني العالي للتدريب والانتاج التابع لهيئة البحث العلمي التابع لوزارة التعليم العالي والبحث العلمي ونظرا لأهمية هذا الموضوع وارتباطه بمؤسسة بحثية ولتحقيق رؤية واستراتيجية وزارة التعليم العالي والبحث العلمي اطلقت على سنة 2023 سنة (الجودة والتحول الرقمي) تم تحديد المتطلبات تطبيق إدارة الجودة الشاملة في المركز البحثي وقياس مدى توفرها في المركز والخروج بنتائج وتوصيات تساهم في تطوير عمل المركز وتحسينه من خلال تبنيه وتوفير هده المتطلبات. تكوَّن مجتمع الدراسة كامل الموظفين العاملين بالمركز البحثي الواقع في مدينة طرابلس والبالغ عددهم (80) موظف وبعد توزيع عدد (74) استبانة على عينة الدراسة تم استرجاع (63) استمارة صالحة للتحليل الإحصائي. ولتحليل البيانات التي جمعت من عينة الدراسة، ولتحقيق أهداف الدراسة، يتم الاستعانة بالحاسب الآلي واستخدام برنامج الحِزم الإحصائية ، وقد خلصت هذه الدراسة إلى مجموعة من النتائج أهمها ما يأتي: وجود ضعف في بند "مشاركة الجميع" وهدا يعني ان نسبة مشاركة الجميع في اتخاد القرارات وتنفيذ المهام كانت ضعيفة، وان المركز البحثي لا يوجد به الية واضحة "للتشجيع والتحفيز" حتى يكون هناك تنافس بين الموظفين وابراز الموظف المتميز وزيادة الانتاجية، وان المركز البحثي يفتقد للكفاءات في الجودة وهده النتيجة كانت واضحة في بند "بناء الية شاملة ومتكاملة لتطبيق إدارة الجودة من (قيادة، تصميم، مراقبة، تدريب، توجيه)" ان المركز البحثي يوجد به ضعف في التواصل بين الإدارات والمكاتب والوحدات في بند " إزالة الحواجز بين الإدارات والأقسام والوحدات " ان المركز البحثي يوجد به ضعف كبير جدا في بند " نظام اتصال فعال داخلي وخارجي" حيت ان الدورة المستندية بين الإدارات والمكاتب ضعيفة وتحتاج الي تطوير، ان المركز البحثي لا يوجد به قاعدة بيانات ومعلومات داخل المركز وهدا ناتج عن عدم تفعيل مكاتب المركز المختصة في هدا العمل، ان المركز البحثي يوجد به ضعف كبير جدا في بند " التحسين المستمر " داخل المركز ، ومن الاشياء الإيجابية ان هناك إرادة حقيقية من الإدارة العليا لتطبيق إدارة الجودة الشاملة حيت وفرة كامل الدعم للباحث اثناء الدراسة، ويوصي الباحث ختاما بتنفيذ هده الدراسة على المركز البحثي حتي تساهم في تحسينه وتطويره.

الكلمات المفتاحية: المنظمة الدولية للتفتييس (ISO)، إدارة الجودة الشاملة(TQM)، الحزمة الإحصائية للعلوم الاجتماعية (برنامج التحليل الاحصائيSPSS).



طه جلال الطاهر الصيد، عبدالرزاق عبدالمجيد امحمد بن جابر، (06-2025)، الأكاديمية الليبية: الأكاديمية الليبية، 7 (1)، 1-12

A Review of the Superpave Performance Grade Classification System for Asphalt Binders by Temperature
Journal Article

Asphalt roads are one of the most important elements of infrastructure in any country, as they play a vital role in achieving comprehensive development and economic growth. They provide safe and reliable means of transportation for citizens and companies, which develops trade, contributes to the development of industry, and expands the investment base. In addition, asphalt roads contribute to enhancing tourism and developing the infrastructure of cities and rural areas. Therefore, it is necessary to invest heavily in the construction and maintenance of asphalt roads to ensure economic growth and social stability. The Superpave system is an important development in the field of paving, as it contributes to improving the design of hot asphalt mixes and evaluating the performance of paving facilities. This system relies on precise standards to evaluate the quality of asphalt mixes, which leads to improving the durability of the pavement and its efficiency in withstanding different traffic loads. This system is also the result of field and laboratory research and studies included in the Strategic Highway Research Program in the United States of America. Due to the importance of this system, we present this study to examine previous studies on the classification of asphalt binders in the high-performance asphalt paving system (Superpave) and to identify the significance of classifying the binder in this system.

Asmaiel Kodan Ali Naiel, Jaafir Omar Deerh, Hassan Awaidat Salem, (06-2025), Academic Journal of Science and Technology,: الأكاديمية الليبية, 5 (1), 253-260

A Novel Deep Learning Approach for Enhanced Ischemic Brain Stroke Detection from CT Images Using Deep Feature Extraction and Optimized Feature Selection
Conference paper

Ischemic brain stroke is the most prevalent type of stroke caused by the occlusion of blood vessels via thrombi or blockages and is the second most common cause of mortality globally, after ischemic heart disease. To improve patient outcomes, ischemic stroke must be diagnosed timely and precise. This paper introduces a novel approach toward ischemic stroke detection from computed tomography (CT) images by integrating deep learning and optimization techniques for feature extraction and selection. The VGG16 model is utilized to extract high-dimensional spatially rich features that efficaciously capture the intricate texture and spatial patterns within the CT scans. To optimize these features, a genetic algorithm (GA) is leveraged to select the most discriminative subset and reduce redundancy. The new method was developed and evaluated on a unique, first-hand dataset gathered from a specialized private hospital in Palestine. The findings show that the suggested combined technique VGG16-GA highly enhances the performance of all classifiers. Notably, the VGG16-GA-XGB model attained superior outcomes, with an accuracy of 98.89%, precision of 98.85%, recall of 98.93%, and an F1-score of 98.92%.

Fathi Sidig Mohamed Gasir, (05-2025), Amman, Jordan: 12th International Conference on Information Technology, ICIT 2025, Amman, Jordan, May 27-30, 2025, 1-10

Mitigating Resonant Vibration via Compressor Base Frame redesign at Souq Al-Khamis Cement Factory, Libya (Part II)
Journal Article

Resonance occurs when the operating frequency of a system aligns with its natural frequency, resulting in amplified vibration amplitudes. To prevent potential damage and ensure optimal performance of a compressor's base frame at Souq Al-Khamis Cement Factory, researchers found the resonance in has been occurred when both the natural frequencies and rotating frequency were overlapped. Resonant Vibration in the base frames arises when the rotating vibration frequency aligns with the frame’s natural modes that leads to structural instability, fault unplanned shutdowns and production losses. This study analyzes resonant vibration in a cement factory compressor base frame and proposes a redesign using finite element methods to mitigate this issue. Four distinct modifications were made to the base frame on its shape, weight and boundary conditions: the first introduces fixed points to enhance rigidity, the second adds supports for increased stability, the third incorporates elements to improve durability, and the fourth enhances the thickness of the compressor. The results indicate that the redesigned configuration most effectively mitigates resonance and improves the system's natural frequency response.

Osama Amhammeed Altaher Hassin, Mostafa H Essuri Abobaker, (05-2025), Academy journal for Basic and Applied Sciences (AJBAS): الأكاديمية الليبية, 7 (1), 1-5