Diagnosis of High Vibration Causes at the Screw Air Compressor Base Frame in Souq Al-Khamis Cement Factory (Part I)
Conference paperThis paper investigates the resonance phenomenon and modal characteristics of a screw air compressor base frame in the cement manufacturing industry. Numerical analysis and data comparison techniques were used to identify and analyze the resonance issue in a specific compressor at Souq Al-Khamis Cement Factory. The research begins by studying the natural frequencies and mode shapes of the compressor base frame through Finite Element Method (FEM) using the ANSYS Workbench. Practical measurements are conducted using the PHYPHOX App Vibration Analyzer to obtain vibration data from the compressor. The findings of this study contribute to understanding the resonance phenomenon in screw air compressors and provide valuable insights for improving the design and maintenance of compressor base frames in the cement manufacturing industry. By identifying the relationship between excitation frequencies and natural frequencies, measures can be taken to mitigate resonance-related vibration problems and ensure the reliable operation of cement production equipment.
Osama Amhammeed Altaher Hassin, Ahmed Omran, Sadok Sassi, Fengshou Gu, (10-2024), tripoli: المجلة الدولية للعلوم والتقنية, 1-2
Aerodynamic Analysis of HAWT using Blade Element Method and Q-Blade Software
Conference paperBlades are the very important components of wind turbines in order to convert wind energy to mechanical or electrical energy. Therefore, the aerodynamic forces acting on the horizontal wind turbine blades have an important role in their performance. The objective of this paper is to investigate the aerodynamic characteristics and power generation properties for a NREL PHASE VI wind turbine blade. For this purpose, an analysis procedure based on the Blade Element Method (BEM) is demonstrated for a horizontal-axis wind turbine model (HAWT), and the methodology approach is discussed in detail throughout this paper. In this study, a Math Lab code has been developed for analyzing a model of Horizontal-Axis Wind Turbine (HAWT) in order to display aerodynamic behaviour on the blade. The NACA S809 airfoil was selected for the analysis of the wind turbine blade, where the tip and root losses proposed by Prandtl are also executed. The calculated results are validated using Q-Blade commercial software at rated wind speed of 10 m/s and show that the BEM is a good method of aerodynamic investigation of a HAWT blade
Osama Amhammeed Altaher Hassin, Noureddine Toumi, Alshamis Ramadan Saad Wadi, Mostafa H Essuri Abobaker, (10-2024), ٍسبها: مجلة جامعة سبها للعلوم البحثة و التطبيقية, 1-2
Comparative Analysis of Optimal vs. Adequate Structural Design in Sustainable Construction
Journal ArticleAbstract::
The growing urgency for sustainable construction practices has necessitated a reevaluation of traditional design approaches in favor of more environmentally responsible methodologies. This paper presents a comparative analysis between optimal and adequate structural design within the context of sustainable construction. Focusing on two case studies—a cutting-edge, sustainably designed commercial building (the Bullitt Center) and a conventional mid-rise residential building in Chicago—the research explores how different design philosophies impact material efficiency, environmental footprint, economic performance, and occupant satisfaction.Through detailed life cycle assessments (LCA) and life cycle energy analyses (LCEA), the study quantifies the advantages of optimal design, which integrates advanced materials, renewable energy systems, and water conservation technologies. The findings demonstrate that while optimal design requires a higher initial investment, it significantly reduces long-term operational costs and environmental impact, achieving a net-zero energy status and greatly improving occupant well-being. In contrast, the conventional building, which adheres to standard design practices, exhibits higher embodied energy, greater environmental degradation, and lower occupant satisfaction.The paper concludes that optimal structural design is not only more sustainable but also economically viable over the building's life span. It emphasizes the importance of integrating sustainability from the earliest stages of design to achieve meaningful environmental and economic benefits. The study calls for the adoption of policy incentives and advanced modeling tools to facilitate the widespread implementation of optimal design principles in the construction industry.
Mohamed Ali karim, (10-2024), المجلة الدولية للعلوم والتقنية: المجلة الدولية للعلوم والتقنية, 35 (2), 1-9
Aerodynamic Analysis of HAWT using Blade Element Method and Q-Blade Software
Conference paperAbstract
Blades are the very important components of wind turbines in order to convert wind energy to mechanical or
electrical energy. Therefore, the aerodynamic forces acting on the horizontal wind turbine blades have an important role in
their performance. The objective of this paper is to investigate the aerodynamic characteristics and power generation
properties for a NREL PHASE VI wind turbine blade. For this purpose, an analysis procedure based on the Blade Element
Method (BEM) is demonstrated for a horizontal-axis wind turbine model (HAWT), and the methodology approach is discussed
in detail throughout this paper. In this study, a Math Lab code has been developed for analyzing a model of Horizontal-Axis
Wind Turbine (HAWT) in order to display aerodynamic behaviour on the blade. The NACA S809 airfoil was selected for the
analysis of the wind turbine blade, where the tip and root losses proposed by Prandtl are also executed. The calculated results
are validated using Q-Blade commercial software at rated wind speed of 10 m/s and show that the BEM is a good method of
aerodynamic investigation of a HAWT blade
رمضان الشامس سعد وادي, (09-2024), المؤتمر العلمي الاول للتطبيقات الهندسة (ICEA)-كلية الهندسة العسكرية: المؤتمر العلمي الاول للتطبيقات الهندسة (ICEA)-كلية الهندسة العسكرية, 1-8
Flexibility and Durability in End Plate Joints: Insights from Advanced Modeling and Simulation
Journal ArticleAbstract
This investigation examines the performance of tension and compression connections in steel beam-column assemblies and concrete slabs, with a particular focus on end-plate joints employing four bolts. By utilising advanced finite element modelling (FEM) and simulation techniques, the study aims to elucidate the behaviour of these joints under both service and extraordinary load conditions. While these connections exhibit favourable flexibility and resilience during typical use, they present challenges in transmitting exceptional loads without incurring joint failure and potential structural collapse, particularly when subjected to unexpected loading scenarios. The research employs a meticulous analytical approach utilising ABAQUS/CAD software. This analysis incorporates a comprehensive evaluation of various parameters, including inherent structural imperfections, material properties, the interplay between steel and concrete, and the influence of non-linear material behaviour. The findings indicate that while these joints perform adequately under standard loading conditions, they may exhibit susceptibility to failure under extreme stresses. This underscores the critical need for the development of adaptable and robust steel beam-column connections to ensure paramount structural safety and stability. Furthermore, the study emphasises the significance of continuous advancements in modelling and simulation techniques, enabling the effective resolution of intricate structural challenges. This investigation offers valuable insights that can be harnessed to develop more efficient and secure composite steel-concrete structures. Furthermore, the study emphasises the significance of continuous advancements in modelling and simulation techniques, which can be employed to mitigate potential structural hazards and enhance building practices, ultimately leading to safer and more resilient structures. © 2024 by authors, all rights reserved.
Author keywords
ABAQUS/CADComposite JointsDurabilityEnd Plate ConnectionsExceptional LoadsFlexibilitySimulation
- ISSN: 23321091
- Source Type: Journal
- Original language: English
- DOI: 10.13189/cea.2024.120437
- Document Type: Article
- Publisher: Horizon Research Publishing
Saleh, B.; Department of Civil Engineering, School of Science Engineering, Libyan Academy, State of Libya
© Copyright 2024 Elsevier B.V., All rights reserved.
Bashir Ali Kalifa Saleh, (09-2024), Civil Engineering and Architecture: springer, 1 (1), 1-1
Implementing Digital Medical Prescriptions in Libya: A Strategy to Minimize Medical Errors in Hospitals and Pharmacies
Journal ArticleThe Libyan healthcare system faces significant challenges in medication management, with high rates of medication errors posing serious risks to patient safety. Digital transformation, particularly through the adoption of electronic medical prescriptions, offers a promising solution to enhance prescription accuracy, improve patient outcomes, and streamline healthcare processes. This technical paper examines the implementation of digital medical prescriptions in Libya, focusing on the role of health informatics, the validation of prescriptions, and the potential barriers to success. The paper also highlights efforts in Arab and African countries similar to Libya, showcasing best practices and lessons learned.
Keywords: Digital prescriptions, Libya healthcare system, Medication errors, Patient safety, Digital transformation, Prescription practices, Prescription accuracy, Handwritten prescriptions, Prescription software, electronic health record systems (EHRS).
Musa Kh A Faneer, (08-2024), مجلة الأكاديمية للعلوم الأساسية والتطبيقية الاكاديمية الليبية للدراسات العليا: Libyan Academy, 2 (6), 122-132
Discontinuity Stress Analysis Of Metallic Pressure Vessel Using FiniteElement Method
Conference paperAbstract
This project investigated the stresses developed in a thick-walled cylinder for rocket motor case
under internal pressure. Stress analysis used the finite element method with ANSYS software for
rocket motor case selection. This study focus on structural elastic analysis of thick-walled pressure
vessels since it is a common design practice to aim at maintaining the induced stresses within the
elastic region. However, pressure vessels operate under complex environments such as high
pressure which may lead to gross plastic deformation and subsequent failure. In process, the
pressure vessel is pressurized beyond the yield point. As a result, the conventional elastic analysis
will not be applicable at internal pressures above the yield point. Therefore, it is important to
examine the structural integrity of a thick-walled pressure vessel in both elastic and plastic state
of the material.
In this study, FE static structural analysis of a presumably untracked thick-walled solid rocket
motor case has been presented, where stress distribution within the motor case wall and the
resulting material deformation were investigated using ANSYS 19.2. Motor case has been designed
with uniform model of the same internal and external diameter, and motor case with diameter
change at both sides is modeled to investigate the effect of the diameter change or shape
discontinuity on the resulting of stresses and deformation using ANSYS program by applying
internal pressure varying from 50 Bars to 350 Bar. Von Mises yield criteria were used by ANSYS
program and calculated Von Mises stresses were compared; the results are close for elastic
analysis. The results show that the Von Mises stresses was high for discontinues shape of motor
case compared by the uniform motor case (constant thickness).
رمضان الشامس سعد وادي, (08-2024), مجلة الاكاديمية لعلوم الاعمال والتطبيقية: مجلة الاكاديمية لعلوم الاعمال والتطبيقية, 1-14
Testing of mechanical properties of composite materials made of almond shells fiber
Journal ArticleIt has been noted the wide spread of the use of composite materials due to their specific strength that made them the best alternative to many other materials,However, the high cost of synthetic fibers represents an obstacle to the use of composite materials in most applications. Therefore, research has tended to test natural fibers, which are the ideal solution for using composite materials in many industries such as furniture, flooring, decoration, and others. This paper concerned with the study of natural composite materials made of Libyan almond shells. Three different sizes of ground almond shells were studied: large size in the form of grains, medium size, and the small size (powder form). These crushed peels were mixed with the resinous polyester resin in four proportions: ratio of 80: 20, 60: 40, 40: 60, and 20: 80. Three basic tests were conducted to investigate the mechanical properties of the samplesIt has been noted the wide spread of the use of composite materials due to their specific strength that made them the best alternative to many other materials, However, the high cost of synthetic fibers represents an obstacle to the use of composite materials in most applications. Therefore, research has tended to test natural fibers, which are the ideal solution for using composite materials in many industries such as furniture, flooring, decoration, and others. This paper concerned with the study of natural composite materials made of Libyan almond shells. Three different sizes of ground almond shells were studied: large size in the form of grains, medium size, and the small size (powder form). These crushed peels were mixed with the resinous polyester resin in four proportions: ratio of 80:20, 60:40, 40:60, and 20:80. Three basic tests were conducted to investigate the mechanical properties of the samples: impact test, tensile test, and flexural test. The results showed that samples made of almond peels in a powder form exhibits the best results among all other kind of specimens for three mentioned tests of mechanical properties.
Elfetori Faraj Alhadee Abdewi, (08-2024), AIP Conference Proceedings: AIP Publishing, 3135 (1), 25-31
Evaluation the effect of the Reservoir Rock Permeability in the Gas Injection and Optimizing Oil Recovery Factor by Eclipse Software
Journal ArticleThis paper examines on the effect of the reservoir rock permeability on gas injection by using reservoir simulation. This task will be performed by using reservoir simulation software (Eclipse). This injection interacts with CO2 to create conditions favorable for oil recovery. The main target of this project is to investigate the effect of the reservoir rock permeability on gas injection and the optimum injection rate to get the optimum recovery. The problems statement of this study is: As the oil and gas in a formation is produced, the hydrocarbons remaining in the reservoir may become trapped because the pressure in the formation has lessened, making production either slow dramatically or stop altogether. Climate change refers to long-term shifts in temperatures and weather patterns. Burning fossil fuels generates greenhouse gas emissions that act like a blanket wrapped around the Earth, trapping the sun’s heat and raising temperatures. Examples of greenhouse gas emissions that are causing climate change include carbon dioxide and methane. The result of effect of the reservoir rock permeability on gas injection by using reservoir simulation shows that with the increase in the permeability of reservoir rock, the rate of gas production increases. The greater the permeability of rocks, the rate of water production increases, which is a direct method relationship between water production and permeability. We note after this evaluation that the cumulative oil, water, and gas production increases with the increase in rock permeability.
Madi Abdullah Naser Abdullrahman, (07-2024), المجلة الدولية للعلوم والتقنية: المجلة الدولية للعلوم والتقنية, 34 (2), 1-27
Applying Precedence Rules in Executing Work for the Purpose of Balancing Assembly Lines Using Electronic Tables
مقال في مجلة علميةThe issue of balancing assembly lines is one of the important activities in production and operations management because of its importance in raising the efficiency and effectiveness of assembly lines, reducing wasted time, and reducing bottlenecks that hinder the flow of production. Among the problems facing production operations is the decrease in line efficiency in addition to the presence of wasted time and the occurrence of accidents. Production bottleneck between workstations, so the goal of this paper was to balance the assembly line by following different precedence rules. A system was designed to re-arrange and balance the assembly line using the Excel program, with the aim of obtaining the best arrangement according to five ways of arranging tasks. The results showed that the priority rule for the weighted site weighing method had the highest efficiency of 88% and the lowest wasted time of 22 minutes.
مادى عبدالله نصر عبدالرحمن، (07-2024)، Journal of Pure & Applied Sciences: مجلة جامعة سبها للعلوم البحثة و التطبيقية، 23 (2)، 14-18