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Abstract—The development and implementation of 

condition monitoring system become very important for wind 

industry with the increasing number of failures in wind turbine 

generators due to over temperature especially in offshore wind 

turbines where higher maintenance costs than onshore wind 

farms have to be paid due to their farthest locations. 

Monitoring the wind generators temperatures is significant 

and plays a remarkable role in an effective condition 

monitoring system. Moreover, they can be easily measured and 

recorded automatically by the Supervisory Control and Data 

Acquisition (SCADA) which gives more clarification about 

their behavior trend. An unexpected increase in component 

temperature may indicate overload, poor lubrication, or 

possibly ineffective passive or active cooling. Many techniques 

are used to reliably predict generator’s temperatures to avoid 

occurrence of failures in wind turbine generators. Multiple 

Linear Regression Model (MLRM) is a model that can be used 

to construct the normal operating model for the wind turbine 

generator temperature and then at each time step the model is 

used to predict the generator temperature by measuring the 

correlation between the observed values and the predicted 

values of criterion variables. Then standard errors of the 

estimate can be found. The standard error of the estimate 

indicates how close the actual observations fall to the predicted 

values on the regression line.  In this paper, a new condition-

monitoring method based on applying Multiple Linear 

Regression Model for a wind turbine generator is proposed. 

The technique is used to construct the normal behavior model 

of an electrical generator temperatures based on the historical 

generator temperatures data. Case study built on a data 

collected from actual measurements demonstrates the 

adequacy of the proposed model. 

I. INTRODUCTION 

Although the number of wind turbine failures due to 

excessive generator temperatures has been increasing, wind 

energy development is still a very significant trend in the 

coming years since it is one of the most effective types of 

renewable energy. Condition monitoring system (CMS) 

plays a pivotal role for condition-based maintenance and 

repair, which can be more beneficial than corrective and 

preventive maintenance [1,2,3,4].To achieve this objective, 

there is a need to develop an active fault prediction 

algorithms which shall be the basis of CMS. Temperature is 

extensively monitored in wind generators; for example, 

temperature sensing is used to monitor specific areas of the 

stator core and the cooling fluids of large electrical machines 

like wind turbine generators. Such measurements can only  
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give indications of overall changes taking place within the 
machine but they are extremely effective if mounted and 
monitored in carefully selected sites. Generator 
temperatures have direct relation with the electrical loads 
and ambient conditions; consequently, when temperature 
measurement is combined with information of the system 
conditions, an effective condition monitoring can be 
achieved. Many mathematical methods are used to construct 
the normal operating model for wind turbine generator 
temperature and then at each time step the model is used to 
predict the generator temperature. For example, a 
temperature trend analysis method based on the nonlinear 
state estimate technique (NSET) is proposed in which the 
differences between predication and actual values are used 
as an important indication to study the potential fault that 
may occur in wind turbine generator based on SCADA. The 
proposed technique is used to construct the normal behavior 
model of the electrical generator temperature, and the 
technique can be utilized to identify dangerous generator 
over temperature before damage that could occur and cause 
shut down of the wind turbine [5]. Another paper 
investigates that mechanical characters can be used to 
diagnose the faults that can happen in generator by 
simulating the impacts of wind turbine components working 
under different conditions. The authors proposed a method 
using the possibility of detecting mechanical and electrical 
faults in wind turbines by applying wavelet transform 
through analyzing the power signal correctly using a valid 
signal processing technique [6]. They assumed in their work 
that when the applied torque varies slowly relative to the 
electrical grid frequency, a quasi-steady state approach 
(when the mechanical torque is approximately equal to 
electric torque) may be taken for the analysis. Condition 
monitoring of wind generator was discussed in another 
paper by using the time and frequency domain analysis [7]. 
The authors emphasize that by monitoring the stator and 
rotor line current trend when both stator and generator rotor 
are under unbalanced force, the detección of generator faults 
is feasible. This paper considers the Multiple Linear 
Regression analysis as one of the most widely used 
statistical techniques for analyzing multifactor data and is 
used for investigating and modeling the relationship 
between variables. The variables must be logical and 
selected carefully to achieve reliable results. Therefore, 
Multiple Linear Regression Model (MLRM) can be the basis 
for a new approach to predict and monitor the temperatures 
inside the wind turbine generators efficiently and reliably, 



by computing the correlation between the observed values 
and the predicted values of the criterion variable based on 
the historical generator temperatures. The arrangement of 
this paper pursues the following steps. Section II presents 
knowledge and specifications about a wind turbine, 
generator, cooling system, and the available SCADA data 
which are used as a case study to test the proposed model in 
this paper. Section III explains how the MLRM as a 
technique is constructed and then used to predict the 
generator temperatures. Section IV is concentrated on the 
selected variables that are used in order to construct the 
MLR model of generator temperature. Section V presents a 
case study used to test the capability of MLRM technique to 
predict the generators temperatures and detect early fault. 
The obtained results and analysis are presented in section 
VI. Section VII provides discussion, conclusions and 
suggestions for further research. 

Nomenclature:  
GT Generator temperature 

GP Generator power 

OT Ambient or outside temperature 
NT Nacelle temperature 

CT Generator cooling temperature 

y Dependent variable (experimental value).  �� The predicted dependent variable in the model  �� The experimental value mean (mean value of y)  

k Number of independent variables  ��  (� = 1,2, … , �) The  ith independent variable from total set of k 

variables ��  (� = 1,2, … , �) The  ith coefficient corresponding to �� �� The intercept coefficient  (or constant) 

i=1,2,3,….,k Independent variables’ index 

N Number of observations ( experimental data 
points) � Residual (the difference between the 

experimental and predicted value)      ����� The residual sum square  ��� The regression sum square  ��� The total sum of squares ����� The residual mean sum square ��� The regression mean sum square � The confidence interval percent   ��
 The error variance of term y �� The residual mean square ��� The jth diagonal element of the (�� � ) ! matrix "� The significance of regression statistical value. 

T Statistical value (the ratio of the coefficient to 
its standard error) #� The coefficient of determination. #$%��  The adjusted coefficient of determination.   ��� , � = 1,2, , , . , � The corrected sum of squares for regressor �� ��� , ' = 1,2, , , . , ( The corrected sum of squares for regressor �� )�� The correlation between the regressor �� and �� *+�, i=1,2,….,k The standardized regression coefficients. ,�, � = 1,2, … , � The new length standardized regression scaling 

(the independent variables importance in the 

model) ��-./  The lack-of-fit sum of squares. ��0� The pure-error sum of squares F234 The Lack-of-fit statistical value  56-./ The lack-of-fit degree of freedom. 560�     The pure error degree of freedom. ℎ�� The ijth element of the hat matrix H.   

VIF The variance inflation factor. 

Z The reduced variable.  X9:;<=, i= 1,2,…,k The mean value of the old data 

 

II. THE SELECTED  GENERATOR AND SCADA 

PARAMETERS  INFORMATION 

The data were collected from a variable speed wind 
turbine with rated power of 450 KW and rated speed 17m/s. 
The generator used is three phase permanent magnetic type 
440/660 V 60 Hz with speed of 1500rpm and is forced air-
cooled using a closed-loop with air to air heat exchanger to 
discharge heat to the surrounding. The cut-in speed and cut-
out wind speed of the turbine is 4.5m/s, and 24m/s 
respectively [8]. More than 80 parameters are measured and 
available every 10 minutes by SCADA system. The data 
behavior is analyzed, then the obtained data are inserted into 
the proposed model to apply the condition monitoring 
accurately. The collected data are recorded in 23/05/2011 
and covers the period from 05:50 pm to 06:00 pm which 
means 60,000 samples obtainable through 600 second. The 
covered period is enough to obtain information about the 
generator performance and predict early faults that can occur 
due to increase in the generator temperature. Each record 
includes much information about the selected wind turbine 
like wind speed, output power, stator current, stator voltage, 
ambient temperatures, nacelle temperatures, generator stator 
winding and cooling air temperature,…,etc. For simplicity, 
we consider the generator stator winding temperature as the 
generator temperature. Commonly, generators have specific 
allowable temperature limitation and according to the 
manufacturers fault handbook of the selected wind turbine, 
an over temperature alarm will occur and the wind turbine 
shuts down when the generator temperature reaches the 
limitation temperature (140Cº) through a continuous 
duration of 60 seconds, and when the temperature falls to 
below 130Cº, the wind turbine will restart [8]. The obtained 
historical data can be analyzed by using the proposed model 
and the model output can be compared with the actual 
measured data to compute the residual mean value and 
investigate the model shape, which leads to determine 
possible faults due to increase in the generator temperature.  

III. MLRM  CONSTRUCTION FOR GENERATOR 

TEMPERATURE 

Multiple linear regression model is one of the most popular 

statistical techniques that uses more than one regressor 

(independent variable) to predict the behavior of a response 

(dependent variable) by modeling and investigating the 

relationship between those variables [9]. The technique is 

described as follows:    

A. Estimate the Model Parameters 

Let there be k independent variables of interest in a 
process, x1,x2,x3,……., xk, and suppose y is a response and 
dependent variable to the variables x. The multiple 
regression model that might describe the relation between 
the dependent and independent variables to predict the 
outcome of the response y in future can be defined as 
follows:   � =  �� +  �!�! +  ���� +  … … … . + �?�? +  � 

In general the response y may be related to k regressor 
or predictor variables, and the regression coefficients ��, �!, ��, … … . , �@ can be estimated by using method of 
least squares [9,10]. 
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Then the predicted dependent value (��) can be computed as: �� =  �� +  �!�! +  ���� +  … … … . + �?�?  [9,10]. 
 

B. Find the Residuals  Between the Observed Values and 

the Corresponding Fitted Valued 

The residuals � (the difference between the observed 
values of y and the corresponding predicted values  ��) play 
an important role in evaluation of the adequacy of the fitted 
regression model and the shape of the model. Moreover; by 
determining and analyzing the relation between the residuals 
ε and corresponding fitted values ��, the model deficiencies 
show up clearly [10,11]. The error variance of term y is �� 
which can be determined by using the following equation: 

�� = ���LM( − O 

 The residual mean square and residual sum square can 
be calculated respectively as follows:   

���LM =  ���LM( − �   ,       ���LM =  �� � −  �� �� � 

Where ( − O =Residual degree of freedom, and O = � − 1 

where k is the regression degree of freedom. The total sum 

of squares ��P  is partitioned into a sum of squares due to 

regression ��� and a residual sum of squares ���LM. Thus, ��� =  ��� +  ���LM,   ��� =  ∑ ( ��� −  �� )�@�R! , and 

�� = 1( S ��
@

�R!  

The regression mean square ��� =  ��T?   , [9,10]. 
 

C. Find the Coefficients’ Confidence Intervals 

The next step is finding the coefficients’ confidence 
intervals of the proposed multiple regression model by 
utilizing the next formula: 

�� −  UV! W� ,@ XY ∗  [�� ∗  ���    ≤   ���   ≤ ��   + UV! W�  ,@ X Y ∗  [�� ∗  ��� 

where �� is the residual mean square, � is the confidence 
interval percent (� = 95% in the model assumption), and ��� 
the jth diagonal element of the (�� � ) ! matrix [9,10].  

D. Measure the Model Adequacy and Linearization 
 

To measure the normality (The residual points behavior) 
and linearization (whether a linear relationship exists 
between the response variable and regressor variables) of the 
proposed model, certain statistic tests of hypotheses about 
the model parameters are useful in measuring model 
adequacy.   

1) Test Significance of Regression: Test of 

significance of regression is needed to investigate whether a 

linear relationship between the response y and any of the 

regressor variables is present. The statistical concept of this 

test emphasizes that at least one of the independent variables �!, ��, … �? is related strongly to the model [9,10]. The 

hypothesis of this test is as follows: (If the significance of 

regression statistical value ("�) is more than proposed F 

value ("�$`-�), then the hypothesis of a�: �! =  �� = ⋯ = �? = 0 is rejected). Which means: "�  should be >   "! W,?,@ ? !,  "�  = m�Tm�Tno  
2) The Coefficient of Multiple Determination: The 

coefficient of determination #� and the adjusted #�, denoted  #$%��  are measures to test the goodness of fit of the proposed 

model. They can be calculated as follows: 

#� = ������ ,                 #$%�� = 1 − ���LM( − O���( − 1 
  

The high value of  #� or #$%��  does not necessarily denote 

that the regression model is suitable. In many cases adding 
a new independent variable to the model may causes worse 
results when the error mean square for the new model 
(�����pqr) is larger than the error mean square of the older 

model (�����stu ), although the new model will show an 

increased value of  #� or #$%�� .   

3) Residual Analysis: Previously residuals had been 

defined as the difference between the observation and fitted 

value of the dependent variable. By computing the residual, 

the deviation between the data and the regression model can 

be viewed. Therefore; residual cam be considered as a 

measure of the variability in the response variable not 

explained by the regression model. It is also convenient to 

think of the residuals as the realized or observed values of 

the model errors. Thus, any departures from the assumption 

on the errors should show up in the residuals. Analysis of 

the residuals is an effective way to discover several types of 

model inadequacies. Plotting residuals is a very effective 

way to investigate how well the regression model fits the 

data. The normal probability plot is a graphical tool for 

comparing a data set with the normal distribution, and can 

be considered as a method of checking the normality 

assumption of the proposed model. Figure 1 displays an 

acceptable normal probability plot in which the points lie 

approximately along a straight line [9, 10].   
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      Fig. 1. The acceptable normal probability plot 



Plot of residual against the fitted values ��� is also useful 
for detecting several common types of model inadequacies. 
The ideal model should have residuals contained in a 
horizontal band (the points on the plot show no pattern or 
trend) as in Figure 2 which indicates that there are not 
obvious defects and there is no sense in adding new 
independent variable to the model [9, 10]. 

 
      Fig. 2.  Scatter plot of acceptable fitted values 

4) PRESS Statistic Test: The predicted residual sum 

of squares (PRESS) is a measure of regression model 

validity and potential performance in prediction, and it can 

be defined as the sum of the squared residuals. When an 

observation falls outside the general trend of the data, it 

considers an influential observation and adversely affects 

the model. The presence of influential observation can be 

exposed by computing the PRESS statistic value. Therefore, 

PRESS statistic is considered as a measure of how well a 

regression model will be in predicting new data. A model 

with a small value of PRESS is desired and can be compared 

with the PRESS residual and computed as follows: 

v#w��  xVyV�xV�z {y|}~ =  S  ( �� ���1 − ℎ��)� @
�R!  

where ℎ�� is the leverage for the ijth element of the hat matrix 

(H), H= � (���) !�� 
The desired model should have smaller PRESS statistic 

value than the residual error value of the model where 
residual error is  ∑  [�� −  ��(�)]�@�R!  [9, 10]. 
 

5) Apply a formal Test for Lack of Fit: This is a test to 

confirm if there is a linear relationship between the 

dependent response y and any of the regressor variables 

X1,X2,X3,….XK. It can consider this test as an overall test of 

model adequacy. The requirements of the formal statistical 

test for the lack of fit of a regression model are the normality, 

independence, and constant-variance requirements to 

confirm that the tentative model adequately described the 

data [9,10]. The lack-of-fit sum of squares is found by the 

following: ��-./ =  ����� −  ��0� 

where ��0� is the pure-error sum of squares which can be 
calculated as 

��0� =  S S(��� −  ���)� @�
�R!

�
�R! ,   

where ��� is the average of the ni observations at ��, ' the 

number of measurements, m the degree of freedom.  The 
hypothesis that says the model adequately described the data 
when Lack-of-fit F test F234  >   F�,�����,����  is rejected, 

where F234  can be calculated from the next relation: 

"-./ =  �~y( x�}y)~ �6 |yz� �6 6�V�~y( x�}y)~ �6 O})~ ~))�~ =  ��-.//56-./��0�/560�  

 

E.  Transformation to Linearize the Model 

 When the model fails to exceed the statistical hypothesis 
tests, there is a required transformation on the regressor 
variables (�!, ��, ��, … �?) since the relationship between 
the dependent variable (y) and one or more of the regressor 
variables is nonlinear even though the condition of normal 
distribution is satisfied (the residual is almost normally 
distributed). Therefore, a nonlinear function can be 
linearized by using a proper transformation [9, 10]. There 
are many linearized functions that can be used for this 
purpose. Polynomial regression models are widely used in 
situation where the response is curvilinear. For example, a 
second-order polynomial model with two variables would 
be: � =  �� + �! �! +  �� �� +  �� �!�  +  �� ��� +  �� �!��  
 

To linearize the proposed model, several steps should be 
taken as follows:  

1) Apply the Mean-Centering Method: One of the 

most common transformation methods is mean-centering 

technique which calculates the mean of each independent 

variable and compute new value for each independent 

variable by subtracting the old independent variable value at 

each observation from its mean. Mean centering method 

works perfectly when polynomial regression technique is 

applied and used to leave the multicollinearity problem, 

which occurs when one or more of the regressor variables 

are strongly correlated together [9,10]. Therefore, the new 

regressor data will be obtained by applying the following 

formula for all the independent variables:  ��pqr =  �����   −  ������ 
 

2) Apply Multicollinearity Test: Multicollinearity is a 

problem in multiple regression that occurs when one or more 

of the regressor variables are robustly correlated with each 

other, which is undesirable in the proposed technique. 

Therefore, high multicollinearity between the independent 

variables results in large variance and covariance for the 

least-squares estimators of the regression coefficients which 

causes highly different estimates of the model parameters 

and leads the coefficients insignificant (the coefficients are 

unstable, and their standard errors are large). A very simple 

measure of multicollinearity is calculating the variance 

inflation factors (VIF) which can be obtained from the 

following formula: ��"� =  (1 − #��) ! 

where #�� is the coefficient of determination obtained when 
a particular independent variable is regressed with degree of 
freedom equals the total number of variables (y and Xs)  −1. 
Practical experience emphasizes that when the variance 
inflation factors values VIFs exceeds 5, the correlated 
regression coefficients are poorly estimated because of 



multicollinearity. SPSS and Minitab statistical softwares 
[11, 12]   automatically perform a tolerance analysis and will 
not adopt the model results with tolerance < 0.2 for each 
variable inserted into the regression model.  ��|~)y(z~ = 1��" 
 

3) Standardized Regression Coefficients: In order to 

determine which independent variable is the most important 

to compute the response y value (dependent variable), length 

scaling method can be used for the independent variables 

and response variable since the dimension of the dependent 

variable and some of independent variables are different and 

the units of the regression coefficients are units of the 

dependent variable y/units of independent variable �� . For 

this reason, it is beneficial to act with scaled regressor and 

response variables by creating dimensionless regression 

coefficients. The corrected sum of squares for regressor ��: ��� =  ∑ (��� −  ���)�@�R! , 

where i = 1,2,.., k, and j= 1,2,..,n. The simple correlation 

between the �� and ��  is )��: 

)�� = ���(������)!/� 

In this scaling, each new regressor is ,�  [9, 10].The 

correlation matrix ,�,  and the standardized regression 

coefficients matrix *+  can be calculated as follows: 
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By determining the values of the standardized regression 

coefficients, the most significant regressor in the proposed 
model will be discovered. The previous steps can be 
summarized in the next flowchart: 

  
 
  Fig. 3. The multiple regression technique. 

IV. THE SELECTED VARIABLES OF THE MODEL 

The selected variables that are related to the proposed 
model can be defined as follows: 

1) Generator Power (GP): Generator power has 

direct effect on the generator temperature. The stator current 

in the generator will be increased when the electrical load is 

high which leads to increase of the generator output power, 

and temperature of generator.    

2)  Ambient or Outside Temperature (OT): The 

significant and frequent rise in the outside temperature 

leads to increase of the generator temperature. 

3) Nacelle Temperature (NT): The nacelle 

temperature has close relevance with the generator 

temperature since the generator itself is located inside the 

nacelle component. 

4) The Cooling Air Temperature of the Generator 

(CT): The cooling air temperature of the generator has 

strong relationship with the generator stator cooling 

condition, which affects its temperature directly  

5) The Generator Stator Winding Temperature 

(GT): represents the dependent variable, and is 

dependent on the previous independent variables. 

Moreover, all variables data are available to predict the 

generator temperatures to detect the potential faults, 

consequently; protect wind turbines from damage and 

decrease the maintenance and operation cost 

[5,6,13,14,15]. 

 

V. CASE STUDY 

As already mentioned, the collected data by SCADA 
system provides enough knowledge for effective 
monitoring. According to the manufacturers fault handbook 
(manual) of the selected wind turbine, the studied wind 
turbine shuts down when the generator temperature amounts 
to 145 Cº over a continuous period of 60 seconds, and 
restarts when the generator temperature drops to 130 Cº [8].  
The considered independent parameters in the proposed 
model are the generator power, outside temperature, nacelle 
temperature, and generator cooling air temperature. The 
dependent variable in the model represents the generator 
stator temperature.  According to the obtained data, Figurer 
4 presents the selected independent variables behavior over 
a continuous period of 600 seconds.      

 
    Fig. 4. Selected independent variables behavior over the time. 

By using Minitab or SPSS statistical softwares and 

inserting the related data to the model, model coefficients 
and regression sum of squares of the temporary output 



regression model give the first indication of the model. The 
initial regression equation is: GT = 110 + 0.0103 GP + 0.049 O T + 0.0079 N T - 0.006 C T 

It can be seen that the model coefficients lay within the 
model output confidence intervals at 95% confidence 
interval.  

  Analysis of Variance    

Source df SS MS F P 

Regression 4 61566 15392 12599223.64 

 

0.000 

Residual  

Error 

59995 73 0   

Lack of Fit 25094 68 0 16.83 0.000 

Pure Error 34901 6 0   

Total 59999 61640    

PRESS = 73.3045   R-Sq(pred) = 99.88%    R-Sq = 99.9% 
         

Moreover, the coefficient of determination #� and the 
adjusted #� are very high (99%) which indicates that adding 
a new term may make the regression model worse if the error 
mean square for the new model ���LMpnª(when adding new 

independent variable to the model) is larger than the error 
mean square of the older model ���LM���  (without adding 

new independent variable to the model).   

A. Test Significance of Regression 

The software results confirm that the generator temperature 

is related to all selected regressor variables since the 

statistical "� = 12599223.64 >  "W,%«Tq¬,%«Tq = 2.37 

where � is the percent confidence interval which equals to 

95% in this present work. "W,%«Tq¬,%«Tq  is collected from   

the F statistical distribution tables [10,11]. 
 

B. PRESS Statistic and Lack of Fit Tests Results 
 

When applying the PRESS statistic and lack of fit test to 
find the model adequacy, it becomes clear that the model 
failed to pass these tests. It can be seen when computing 
PRESS statistic which is equal to 73.3045 and is bigger than 
the residual sum of square which is equal to 73.  Moreover, 
there is a lack of fit in the model and the regression function 
is not linear since the lack-of-fit test statistic F234 = 16.83 > F�,�����,���� = 1.  The reason why the model does not fit the 

data is that the relationship between the generator 
temperature and some of the regressor variables (ambient, 
nacelle, and cooling air temperatures) is nonlinear. 
Therefore, appropriate transformation on the regressor 
variables and the dependent variable is necessary to let the 
model exceed the proposed statistical test.  

C. Polynomial Regression Model 

Polynomial regression models are widely used in 
situations where the response is curvilinear to provide better 
results. By plotting the relationships between the observed 
generator temperatures and all the selected variables, it is 
found that the quadratic curve is very suitable for the 
majority of variables. This means that the proper selection 
of the fitting model for the four independent variables is the 
polynomial regression model. Since there are four 
independent variables, the fitting polynomial regression 
model of fourth-order response surface in four variables is 
as follows: ®� = �� +  �!. ®v + ��. ¯� +  ��. °� +  ��. �� + ��. ®v� + �±. ¯�� +  �². °�� +  �³. ¯�� +  �´. ®v� +

 �!�. ¯�� +  �!!. °�� +  �!�. ��� +  �!�. ®v� + �!�. ¯�� +  �!�. °�� +  �!±. ��� + �!² . ®v. ¯� +�!³. ®v. °� + �!´. ®v. �� + ���. ¯�. °� + ��!. ¯�. �� +���. °�. �� + ���. ®v. ¯�. °� + ���. ®v. ¯�. �� +���. ®v. °�. �� + ��±. ¯�. °�. �� +��². ®v. ¯�. °�. ��    [10, 11].  

The obtained results are given in the following table:  
 

Source DF SS MS F P 

Regression 27 61615.6 

 

2282.1 

 

5657660.45 

 

0.000 

Residual  

Error 

59972 

 

24.2 

 

0.0 

 

  

Lack of Fit 25071 

 

18.6 

 

0.0 

 

4.63 

 

0.000 

Pure Error 34901 5.6 0.0   

Total 59999 61639.8 

 

   

PRESS = 24.2159   R-Sq(pred) = 99.96%    R-Sq = 99.9% 

From the previous results it becomes clear that there is 
improvement in the new model. The statistic value  F234 is 
reduced to 4.63 which implies that the polynomial 
regression model in four regressor variables is a proper 
selection. However, The PRESS statistic value = 24.2159 >  
Residual sum of square = 24.2 which means that some 
observations in the model falls outside the general trend of 
the data and affect the model quality.  By applying the mean-
centering method, this problem can be solved. In mean-
centering method each dependent variable is subtracted 
from its mean and the new values of each variable is inserted 
into the polynomial regression model. The new obtained 
result is improved since the model passed the lack of fit and 
PRESS statistic tests. The output results confirm that the 
regressor variables are nearly perfectly linearly related, and 
in such situations the inferences based on the regression 
model can be misleading (deceptive) since the variance 
inflation factors (VIF) for all variables are very high (>5) [9, 10]. The obtained correlation matrix strongly 
confirms that the variance inflation factors for all variables 
exceed 5 which means that the problem of multicollinearity 
is existing.   Table 1 and 2 display the variance inflation 
factors and correlation of some independent variables, and 
we can see from the correlation matrix that the correlation 
values between some of independent variables inserted to 
the polynomial regression model are very high which cause 
problem of multicollinearity in the proposed model and thus 
the model is not proper. 

Source DF SS MS F P 

Regression 5 61600 12320 18508202.24 0.000 

Res.  Error 59972 40 0.0   

Lack of Fit 22328 16 0.0 0.984 0.000 

Pure Error 37666 24 0.0   

Total 59999 61640    

PRESS = 39.9442   R-Sq(pred) = 99.94%   R-Sq = 99.9% 
 

Table I    

COLLINEARITY STATISTICS 

Model Tolerance VIF 

CT 0.013 77.330 µ¶· 0.003 359.768 µ¶¸ 0.001 878.063 µ¶¹ 0.004 258.316 º¶µ¶ 0.005 217.610 »¼º¶µ¶ 0.005 202.966 »¼º¶µ¶½¶ 0.008 126.139 



Table II    

SAMPLE OF CORRELATION MATRIX  

MODEL µ¶¸ º¶¹ µ¶¹ NT GPNT OTNTCT 

GPOTNT 0.823 0.801 0.716 0.83 0.854 0.927 

GPNTCT 0.807 0.7 0.7 0.83 0.83 0.884 

GPNT 0.78 0.7 0.68 0.75 1 0.864 µ¶¸ 1 0.54 0.98 0.72 0.78 0.80 

NTCT 0.714 0.65 0.64 0.6 0.801 0.7 
 

In this situation, some modification of the regression 
model may reduce the impact of multicollinearity. There are 
many techniques that can be used to handle 
multicollinearity. Converting the model to the second order 
is useful and overcomes the multicollinearity by combining 
the variables into a composite variable in the model. The 
generator power data do not suffer from any 
multicollinearity; therefore, the rest of the variables should 
be reduced to one variable which can be represented as (Z).  
One of the most beneficial statistical techniques that can be 
used to shorten the three variables in the proposed model to 
overcome the multicollinearity is defined as follows:    

 ¾ = (��¿�À + °�¿�À)/¯�¿�À   [9] 
 

 

By plotting the relationships of the observed generator 
temperatures with the combined independent variables, and 
generator power values, it can be confirmed that the 
quadratic model is very suitable and provides better results. 
The final version of the proposed model is as follows:  ®� =  �� +  �!. ®v¿�À +  ��. ¾ +  �� . ®v¿�À� +  �� . ¾� + �� . ®v¿�À . ¾ 
 

 

The final results of the proposed model are very 
reasonable and the problem of multicollinearity 
disappeared. From Table 3 we see that the variance inflation 
factors (VIF) for all variables are very low (< 5), and the 
tolerance values should be > 0.2. Moreover, we find that 
most of the variables are significant and contribute 
effectively in the model since  O < 0.05 for each variable 
where p is the significant measure for any variable. When p 
is less than 5 percent, the particular variable is very 
significant and participates strongly in the proposed model 
[9]. 

Table III    

VIF, TOLERANCE, AND THE SIGNIFICANT VALUES 

Model Tolerance VIF p 

GP 0.391 2.559 0.000 Â 0.249 2.559 0.000 »¼· 0.903 1.107 0.000 Â· 0.263 3.803 0.000 »¼. Â 0.398 2.510 0.000 
 

VI. THE RESULTS ANALYSIS 

To measure the adequacy and normality of the proposed 
model, the model residual should be analyzed. Figure 5 
shows that the error term ϵ is almost normally distributed 
and it is very close to normal probability plot since the 
majority of the residual points (the difference between the 
predicated generator temperature values and measured 
generator temperature values) are approximately distributed 
along a straight line. Only a few points fall outside the fitted 
line, which does not affect the general trend of the model. 

The residual is plotted against the fitted values ®�Ã�. Figure 6 
confirms that the residuals are contained in a horizontal band 
which indicates that there are not obvious defects. The 
residuals versus the independent observed variable GT 
should also give indication that the values are perfectly 
normally distributed. Figure 7 and 8 confirm this analysis. 
The final proposed regression equation is: 

 ®� = 113 + 0.0102®v + 0.00000334¾ + 0.000003®v�−  0.000009¾� −  0.000003®v. ¾ 
 

The analysis of variance emphasizes that the model does 

not suffer from lack of fit since the statistic value  F234 =0.98 <  F�,�����,���� = 1 . The model also passed the 

PRESS statistic test where PRESS statistic = 39.9442 <  

Residual sum of square = 40.  

To determine which independent variable is most 

important, using the length scaling method for this purpose 

is very powerful. The standardized coefficients of the model 

let us obtain the fitted equation as follows: ®�Å � = 0.97 ®v + 0.003¾ + 0.026®v� − 0.003¾� − 0.003®v. ¾ 
 

 
      Fig.5. The normal probability plot 

 
      Fig. 6. The fitted values plot versus residual 

0.0960.0640.0320.000-0.032-0.064-0.096-0.128

3000

2500

2000

1500

1000

500

0

Residual

F
re

q
u

e
n

c
y

Histogram
(response is GT)

 
      Fig. 7.  The residual histogram plot 



 
      Fig. 8.The independent variable versus standardized residual 

 

 

 The remaining obtained results are as follows. 

 Descriptive Statistics  

Model Mean Std. Deviation N 

GTT 113.3583 1.01358 60000 

GP .0000 98.56065 60000 

Z -403.3393 1413.25587 60000 

GP2 9714.0401 8515.30645 60000 

Z2 2159941.4696 7270987.03276 60000 

GPZ 16623.6089 190923.15862 60000 

  
 Coefficients  

Model 95% Confidence 

Lower Value 

Interval 

Upper Value 

Stand. 

Coff. 

GP 0.01 0.020 0.996 

Z  0.00001 0.000036 0.003 

GP2 0.000002 0.0000035 0.026 

Z2 0.000008 0.0000095 -0.003 

GP.Z 0.000002 0.0000035 -0.003 
 

We conclude that increasing the standardized value of 
generator power by one unit increases the standardized value 
of generator temperature by 0.97 units (dimensionless 
regression coefficient). Furthermore, increasing the 
standardized value of Z variable by one unit increases the 
standardized value of generator temperature by 0.003 units. 
Therefore it indicates that the generator power is more 
important than the generator cooling, nacelle temperatures, 
and outside temperatures.  

VII. CONCLUSION 

Based on investigations in this paper, Multiple Linear 
Regression analysis can be used for analyzing multifactor 
data and modeling the relationship between variables. The 
selected variables have a direct and strong effect with the 
generator temperature which leads to achieve reliable 
results. Measuring the correlation between the observed 
values and the predicted values of the criterion variable 
based on the historical generator temperatures is the main 
idea of this technique. The results confirm that the 
polynomial regression technique is the best model that fits 
the obtained data. The obtained results emphasize that the 
generator power is the most effective variable on the 
generator temperatures based on the standardized 
coefficients of the model. The method has the advantage of 
being simple computationally and conceptually. Therefore, 
application in condition monitoring of the wind turbine 
generator condition can be determined by using the 
proposed method. With the effective selection of the data at 
the normal and emergency operation, this method can 
achieve reasonable results to predict wind turbine 

generator’s temperature under different loads.  Future work 
is also required to apply this method to other operational 
wind turbines for detection of a faulty condition and 
prediction of potential failure some time in advance. 
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