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Abstract—Fault detection and classification is critical to the 

reliability of modern control systems in different industries, 

where detecting and classifying faults in operational processes 

are very important things while failure to detect and classify 

them, may cause irreparable damage. In this paper, fault 

detection and classification approach is presented. The first 

step, multi stage recursive least squares parameter estimation 

approach for controlled autoregressive autoregressive moving 

average systems  (CARARMA) is developed with a view to 

estimate the parameters of the system, additionally, improve the 

effectiveness of the computation. By means of multi stage 

approach, the (CARARMA) system is decomposed into three 

simple identification models, and the parameters of each simple 

model is identified one by one. These parameters estimated by 

this approach are referred to as features, and not all of them 

have the same useful data about the system. In order to select 

the valuable features and improve a classification accuracy, the 

Linear Discriminant Analysis (LDA) approach based on 

scattering matrices is applied for dimension reduction. The 

classification between these reduced classes is done based on the 

Naive Bayes classifier. Finally, the obtained results explain the 

performance of this proposed approach.  

 Keywords— fault detection and classification, Parameter 

Estimation, Multi-Stage, Linear Discriminant Analysis, Naive 

Bayes classifier. 

I. INTRODUCTION  

For industrial operations to promote system reliability and 
safety, fault detection techniques are increasingly necessary. 
Therefore, the importance of fault detection and isolation has 
increased along with the requirement for system reliability 
and safety, which is being pushed by both economic 
incentives and environmental factors. For the systems to 
identify and isolate problematic components, some form of 
redundancy is required. Hardware redundancy can be used to 
provide redundancy in situations with very high security 
requirements. Hardware redundancy offers excellent 
performance and reliability, however there are disadvantages 
to the strategy, such as the price of additional hardware, the 

weight and size of the device, and the fact that some 
components cannot be replicated. Analytical redundancy can 
take the place of hardware redundancy. In this technique, a 
mathematical model's redundancy can be used in place of 
additional hardware. Model-based technique is the term used 
to describe the analytical redundancy. An important method 
of model-based approach is parameter estimation, which 
involves estimating the parameters using the real data [1]. For 
many diverse systems, LS and RLS algorithms algorithm are 
a well-known and significant model-based techniques [2]. 
Although the LS and RLS algorithms are capable of 
estimating system parameters, they are constrained by their 
inability to estimate the parameter of the noise model and 
their poor computing efficiency [3]. There are many modern 
method to overcome these problems, and in this paper, multi 
stage RLS identification algorithm for (CARARMA) systems 
is chosen. By using this method, the noise model parameters 
can be estimated and computational load is reduced. The 
estimated parameters produced by this methodology are 
called as features and not all of these features have the same 
level of informational usefulness. Therefore, a few useful 
parameters can accurately describe the process' behavior. It is 
important to choose the informative parameters for the 
classification mission, to improve classification accuracy. A 
dimension reduction approach is utilized to solve this case. In 
this work, it is decided to use (LDA) approach based on 
scattering matrices. This technique is effective for reducing 
dimensions [4]. Finally, the classification is done using the 
Naive Bayes classifier. It is depends on Bayesian probability 
model. If there is a class offered, this classifier is based on the 
idea that the value of each feature is independent of each 
other. It is depends on the mathematical principle of 
conditional probability. The remainder of this article is 
structured as: in section 2 the system description and 
identification model is introduecd. In section 3 multi stage 
recursive least square identification algorithm is derived. 
Section 4 presents dimension reduction techniques. Section 5 
naive bayes classifier is introduced. Section 6 a simulation 
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results are given to illustrate the capability of the proposed 
approach. The conclusions are displayed in section 7.   

II. SYSTEM DESCRIPTION AND IDENTIFICATION MODEL 

In this study, the discrete-time, linear, time-invariant 
system is described by (CARARMA) model and a drawing 
of it is shown in fig. 1  

𝐴(𝑧)𝑦(𝑛) = 𝐵(𝑧)𝑢(𝑛) +
𝐷(𝑧)

𝐶(𝑧)
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𝑢(n), y(n) are the system input and output, 𝜉(n) is the 

noise, and ia , jb , ic  and id  are the constants. 
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Fig. 1. The CARARMA system 

The inner variable is initially defined as 

𝑣(𝑛) =
𝐷(𝑧)

𝐶(𝑧)
𝜉(𝑛),                                                                     (2) 

As a result, It is possible to rewrite equation (1) as 

A(z)y(n) = 𝐵(𝑧)𝑢(n) + v(n)                                                (3) 

 Using a linear regression form, the following explanation 
can be made: 

𝑦(n) = 𝑍1
𝑇(𝑛)𝜃1 + 𝑍2

𝑇(𝑛)𝜃2 + 𝑣(𝑛)                              (4) 

Where,  

Z1(n) = [−y(n − 1), … , −y(n − na)]T ∈  ℝna , 

 Z2(k) = [u(n − 1), … , u(n − nb)]T ∈  ℝnb , 

The information vectors. 

θ1 ≔ [a1, … , ana
]

T
∈  ℝna ,           

   θ2 : = [b1, … , bnb
]T  ∈  ℝnb ,  

The parameter vectors. Equation (2) can be changed as 

𝑣(𝑘) = [1 − 𝐶(𝑧)]𝑣(𝑘) + 𝐷(𝑧)𝜉(𝑘) 

= −𝑐1𝑣(𝑛 − 1) −  … − 𝑐𝑛𝑐
𝑣(𝑛 − 𝑛𝑐) + 

                𝑑1𝜉(𝑛 − 1) + ⋯ +  𝑑𝑛𝑑
𝜉(𝑛 − 𝑛𝑑) + 𝜉(𝑛)     (5) 

It can alternatively be stated as a linear regression with 
the following formula: 

𝑣(𝑘) = 𝑍3
𝑇(𝑛)𝜃3 + 𝜉(𝑛)                                               (6) 

Where 

Z3(n) = [−v(n − 1), … , −v(n − nc), 𝜉(n − 1), … , 𝜉(n
− nd)]T 

θ3 : = [c1, … , cnc
, d1, … , dnd

]T 

                       θ = [θ1 θ2 θ3]T 

Substitute equation (6) into equation (4), the result is 
given by the equation below [5],  

𝑦(𝑛) = 𝑍1
𝑇(𝑛)𝜃1 + 𝑍2

𝑇(𝑛)𝜃2 + 𝑍3
𝑇(𝑛)𝜃3 + 𝜉(𝑛)

= Z𝑇(𝑛)𝜃 + 𝜉(𝑛)                                      (7) 

Z𝑇(𝑛) = [𝑍1
𝑇(𝑛) 𝑍2

𝑇(𝑛) 𝑍3
𝑇(𝑛) ] 

θ = [

θ1

θ2

θ3

]  

The system's (CARARMA) identification model is 
represented by this outcome. 

III. MULTI STAGE RECURSIVE LEAST SQUARE 

IDENTIFICATION ALGORITHM   

The decomposition technique is the fundamental concept 
for the multi-stage RLS algorithm. Hence, the (CARARMA) 
System is divided into three subsystems as a result. First, 
three intermediate variables should be defined. 

𝑦1(𝑛) = 𝑦(𝑛) − 𝑍2
𝑇(𝑛)𝜃2 − 𝑍3

𝑇(𝑛)𝜃3,                               (8) 

𝑦2(𝑛) = 𝑦(𝑛) − 𝑍1
𝑇(𝑛)𝜃1 − 𝑍3

𝑇(𝑛)𝜃3,                               (9) 

𝑦3(𝑛) = 𝑦(𝑛) − 𝑍1
𝑇(𝑛)𝜃1 − 𝑍2

𝑇(𝑛)𝜃2,                            (10) 

It is possible to separate the system in equation (5) into 
the multiple fictitious subsystems indicated below [6]. 

𝑦𝑖(𝑛) = 𝑍𝑖
𝑇(𝑛)𝜃𝑖 + 𝜉(𝑛),       𝑖 = 1,2,3.                              (11) 

Three criterion functions should be defined,   

       𝐽𝑖(𝜃𝑖) ∶= ∑ [𝑦𝑖(𝑗) − 𝑍𝑖
𝑇(𝑗)𝜃𝑖]

2𝑡
𝑗=1 ,     𝑖 = 1,2,3. 

Using the partial derivatives of the solutions to the multi-
optimization problems is   

𝐽𝑖(𝜃𝑖), 𝑖 = 1,2,3.  with regards to 𝜃𝑖 be zero gives 

𝜕𝐽𝑖(𝜃𝑖)

𝜕𝜃𝑖
|

𝜃𝑖=�̂�𝑖(𝑡)
= −2𝑍𝑖(𝑗) ∑ [𝑦𝑖(𝑗) − 𝑍𝑖

𝑇(𝑗)�̂�𝑖
𝑡
𝑗=1 ] =

0,        𝑖 = 1,2,3.                                                                      (12) 

Considering the estimated parameters 

 �̂�(𝑘): = θ = [�̂�1(𝑛) �̂�2(𝑛) �̂�3(𝑛)]
T
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From (12), we may obtain the RLS algorithm for 
computing at time n as: 

�̂�𝑖(𝑛) = �̂�𝑖(𝑛 − 1)

+ 𝐿𝑖(𝑛)[[𝑦𝑖(𝑛) − 𝑍𝑖
𝑇(𝑘)�̂�𝑖(𝑛 − 1)]   (13) 

𝐿𝑖(𝑛) = 𝑃𝑖(𝑛 − 1)𝑍𝑖(𝑛)[+𝑍𝑖
𝑇(𝑛)𝑃𝑖(𝑛 −  1)𝑍𝑖(𝑛)]

−1
, 

 𝑃𝑖(𝑛) = [𝐼 − 𝐿𝑖(𝑛)𝑍𝑖
𝑇(𝑛)]𝑃𝑖(𝑛 − 1),  

          𝑃𝑖(0) = 𝑝0𝐼, 𝑖 = 1,2, 3          

With i=1,2,3, and substitute equations (8)-(10) into 
equation (13) results in: 

�̂�1(𝑛) = �̂�1(𝑛 − 1)

+ 𝐿1(𝑛)[𝑦(𝑛) − 𝑍2
𝑇(𝑛)𝜃2 − 𝑍3

𝑇(𝑛)𝜃3

− 𝑍1
𝑇(𝑛)�̂�1(𝑛 − 1)]                               (14) 

�̂�2(𝑛) = �̂�2(𝑛 − 1)

+ 𝐿2(𝑛)[𝑦(𝑛) − 𝑍1
𝑇(𝑛)𝜃1 − 𝑍3

𝑇(𝑛)𝜃3

− 𝑍2
𝑇(𝑛)�̂�2(𝑛 − 1)]                              (15) 

�̂�3(𝑛) = �̂�3(𝑛 − 1)

+ 𝐿1(𝑛)[𝑦(𝑛) − 𝑍1
𝑇(𝑛)𝜃1 − 𝑍2

𝑇(𝑛)𝜃2

− 𝑍3
𝑇(𝑛)�̂�3(𝑛 − 1)]                              (16) 

The issue is that the right-hand sides of the equations from 
(14) – (16), include the vectors of unknown parameters  𝜃1,𝜃2  

and  𝜃3. In order to solve this issue, the replacement of these 
unknown parameters with their previous estimation is 

done �̂�𝑖(𝑛 − 1),   , where,   𝑖 = 1,2, 3. 

�̂�1(𝑛) =  �̂�1(𝑛 − 1) + 𝐿1(𝑛)[𝑦(𝑛) − 𝑍2
𝑇(𝑛)�̂�2(𝑛 − 1)  −

𝑍3
𝑇(𝑛)�̂�3(𝑛 − 1) − 𝑍2

𝑇(𝑛)�̂�1(𝑛 − 1)] = �̂�1(𝑛 − 1) +

𝐿1(𝑛)[𝑦(𝑛) − 𝑍𝑇(𝑛)�̂�(𝑛 − 1)], 

�̂�2(𝑛) =  �̂�2(𝑛 − 1) + 𝐿2(𝑛)[𝑦(𝑛) − 𝑍1
𝑇(𝑛)�̂�1(𝑛 − 1)  −

𝑍3
𝑇(𝑛)�̂�3(𝑛 − 1) − 𝑍2

𝑇(𝑛)�̂�2(𝑛 − 1)] = �̂�2(𝑛 − 1) +

𝐿2(𝑛)[𝑦(𝑛) − 𝑍𝑇(𝑛)�̂�(𝑛 − 1)], 

�̂�3(𝑛) =  �̂�3(𝑛 − 1) + 𝐿3(𝑛)[𝑦(𝑛) − 𝑍1
𝑇(𝑛)�̂�1(𝑛 − 1)  −

𝑍2
𝑇(𝑛)�̂�2(𝑛 − 1) − 𝑍3

𝑇(𝑛)�̂�3(𝑛 − 1)] = �̂�3(𝑛 − 1) +

𝐿3(𝑛)[𝑦(𝑛) − 𝑍𝑇(𝑛)�̂�(𝑛 − 1)], 

The inner variables 𝑤(𝑛 − 𝑖) of the vector 𝜑3(𝑛)   are 
unknown, and their estimates can be utilized in place of 
𝑤(𝑛 − 𝑖)as: 

�̂�3(𝑛): = [−�̂�(𝑛 − 1), … , −�̂�(𝑛 − 𝑛𝑐), 𝜉(𝑛 − 1), … , 𝜉(n

− nd)]
𝑇
 

�̂�(𝑛) = [𝑍1  𝑍2  �̂�3]
T
 

Equation (5) provides the following:   

     𝑣(𝑛) = 𝑦(𝑛) − 𝑍1
𝑇(𝑛)𝜃1 − 𝑍2

𝑇(𝑛)𝜃2, 

Afterwards, �̂�(𝑛) can be determined by using: 

   �̂�(𝑛) = 𝑦(𝑛)−𝑍1
𝑇(𝑛)�̂�1 − 𝑍2

𝑇(𝑛)�̂�2. 

Hence, the multi-stage RLS identification algorithm is 
described as [6]: 

�̂�1(𝑛) = �̂�1(𝑛 − 1) + 𝐿1(𝑛)[𝑦(𝑛) − �̂�𝑇(𝑛)�̂�(𝑛 − 1)]   (17) 

𝐿1(𝑛) = 𝑃1(𝑛 − 1)𝑍1(𝑛)[1

+ 𝑍1
𝑇(𝑛)𝑃1(𝑛 − 1)𝑍1(𝑛)]

−1
               (18) 

𝑃1(𝑛) = [𝐼 − 𝐿1(𝑛)𝑍1
𝑇(𝑛)]𝑃1(𝑛 − 1), 

 𝑃1(0) =  𝑝0𝐼𝑛𝑎
                                                                         (19) 

𝑍1(𝑛) = [−𝑦(𝑛 − 1), −𝑦(𝑛 − 2), … , −𝑦(𝑛 − 𝑛𝑎)]𝑇      (20) 

�̂�2(𝑛) = �̂�2(𝑛 − 1) + 𝐿2(𝑛)[𝑦(𝑛) − �̂�𝑇(𝑛)�̂�(𝑛 − 1)]   (21) 

𝐿2(𝑛) = 𝑃2(𝑛 − 1)𝑍2(𝑛)[1

+ 𝑍2
𝑇(𝑛)𝑃2(𝑛 − 1)𝑍2(𝑛)]

−1
               (22) 

𝑃2(𝑛) = [𝐼 − 𝐿2(𝑛)𝑍2
𝑇(𝑛)]𝑃2(𝑛 − 1),   

      𝑃2(0) = 𝑝0𝐼𝑛b
,                                                               (23) 

𝑍2(𝑛) = [u(𝑛 − 1), u(𝑛 − 2), … , u(𝑛 − 𝑛b)]𝑇                 (24) 

�̂�3(𝑛) = �̂�3(𝑛 − 1) + 𝐿3(𝑛)[𝑦(𝑛) − �̂�T(𝑛)�̂�(𝑛 − 1)]                      

                                                                                                      (25) 

𝐿3(𝑛) = 𝑃3(𝑛 − 1)�̂�3(𝑛) [1

+ �̂�3
𝑇

(𝑛)𝑃3(𝑛 −  1)�̂�3(𝑛)]
−1

             (26) 

𝑃3(𝑛) = [𝐼 − 𝐿3(𝑛)�̂�3
𝑇

(𝑛)] 𝑃3(𝑛 − 1),       

 𝑃3(0) = 𝑝0𝐼𝑛c
,                                                                     (27) 

�̂�(𝑛) = 𝑦(𝑛)−𝑍1
𝑇(𝑛)�̂�1 − 𝑍2

𝑇(𝑛)�̂�2                                 (28) 

�̂�4(𝑛): = [−�̂�(𝑛 − 1), … , −�̂�(𝑛 −  𝑛𝑐), 𝜉(𝑛 − 1), , … , 𝜉(n

− nd)]
𝑇

                                                      (29) 

Ẑ(n) = [Z1
T(𝑛), Z2

T(𝑛), Ẑ3
T(𝑛)] ∈  ℝn,                                (30) 

�̂�(𝑛) = [θ̂1
T(𝑛), θ̂2

T(𝑛), θ̂3
T(𝑛)]  ∈  ℝ𝑛                                 (31) 

IV. DIMENSION REDUCTION TECHNIQUES 

The term "dimension" describes a measurement of an 
object's specific aspect. The study of techniques to lower the 
number of dimensions describing an object is known as 
dimension reduction. Its main goals are to eliminate duplicate 
and unnecessary data In order to lower computational loads 
and prevent data over-fitting as well as to enhance data 
quality for effective data-intensive processing jobs [7]. For 
this study, (LDA) method depend on scattering matrices has 
been chosen from a variety of available dimension reduction 
techniques. In order to do this, a within-class matrix,   
between-class matrix,  , and a mixed scattering matrix,  , are 
defined: 

1 1

{( )( ) }
L L

T

W i i i i i i

i i

S P E X M X M P
 

           (32) 

0 0

1

( )( )
L

T

B i i i

i

S P M M M M


                                  (33) 

0 0{( )( ) }T

M W BS E X M X M S S                         (34) 






L

i

iiMPXEM

1

0 }{                                                     (35) 

Where iP  class i  a priori probability, that is
N

n
P i

i  , 

where in  is the number of samples in Class i , out of a total 

of N samples, iM is the vector of mathematical expectation 

and i is the covariance matrix of i-th class. It is possible to 



minimize the criterion in order to solve the challenge of 
finding the transformation matrix A. 

1( )M BJ tr S S                                                                  (36) 

In order to find the answer, the matrix's eigenvalues are 

searched for 
1

1( ) ; 1,2,..., ; ...M B i i i nS S i n                    (37) 

Then, the matrix A (transformation matrix) is 

mnm *1 ]...[                                                       (38) 

Where , 1,2,...,i i m   indicate eigenvectors 

coinciding to the largest eigenvalues 1,..., m   

Then, reduced-dimension vectors are [7]:  

1**1* n
T

mnm XX                                                               (39) 

V. NAIVE BAYES CLASSIFIER 

The Naive Bayes classifier is depends on Bayesian 
probability model. If there is a class offered, The Naive Bayes 
classifier is based on the idea that the value of each feature is 
independent of each other. Its foundation is conditional 
probability, a mathematical concept. The Naive Bayes 
classifier makes 2n! Independent assumptions if n attributes 
are provided. A conditional probability model is provided as 
follows for the classifier above [9]: 

( )iP x                                                                           (40)  

In this case, class variable   is conditional on several features  

Variable 1,..., nx x x   

Equation (40) can be represented by applying the Bayes 
theorem: 

( ) ( )
( )

( )

i i

i

p x P
P x

p x

 
                                               (41) 

Where, ( )p x is the probability density function of x . 

If we focus on the two-class case 21, , currently, the Bayes 

classification rule can be expressed as: 

1 1 2 2 1

1 1 2 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

p x P p x P x

p x P p x P x

    

    

  

  
                     (42) 

1 2
1

2 1

1 2
2

2 1

( ) ( )
( )

( ) ( )

( ) ( )
( )

( ) ( )

p x P
l x x

p x P

p x P
l x x

p x P

 


 

 


 

   

   

                               (43) 

( )l x is called the likelihood ratio and 2

1

( )

( )

P

P




 is referred to 

as the decision's likelihood ratio's threshold value. 
Now, the current objective is to design the Bayesian 

classifier. Given that the related densities have an exponential 
form. Working with discriminant functions is recommended, 
in which the (monotonic) logarithmic function is involved
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                                                                                         (44) 
The Gaussian or normal density function is used in 

practice the most frequently, its tractability for computation 
and the fact that it effectively simulates a wide range of 
instances are the main drivers of its appeal [10]. 
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The decision rule of equation (45), in a particular scenario 

where ( )iP x  are Gaussian with expected vectors iM and 

covariance matrices
i  , changes to [8]: 
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VI. SIMULATION RESULTS 

The following third order system is taken into account to 
demonstrates the efficacy of the offered approach 

 A(z) = 1 + 0.52z−1 + 0.61z−2 + +0.34z−3                                                                  

B(z) = 0.42z−1 + 0.31z−2 + +0.68z−3                                  

 C(z) = 1 + 0.45z−1                                                   

D(z) = 1 + 0.75z−1 

𝑢(𝑛) is produced as a white sequence that has m = 0 and 
2 21   𝜉(𝑛) is produced a Gaussian white noise that has 

m = 0  and 
2 20.1  . The validation of this proposed 

algorithm is tested utilizing Mean Bias Error (MBE) when 
2 20.1  and 

2 20.6  respectively. MBE is the mean of the 

difference between the estimated and actual output, and it 
calculated using the following equation:  

1

1
( ( ) ( ))

N

k

MBE y k y k
N 

                                             (47)                                                          

The preferred value of MBE is the small value (close to 
zero) [11]. Fig. 2 demonstrates MBE versus (n) when 

2 20.1  and
2 20.6  , the conclusion from the figure is that 

the model effectiveness increases when the noise level 
decreases. 



 

Fig. 2. Mean Bias Error With Two Different Noise Variances 

The true output (Black Color), the estimated output (Red 
Color) and the residual (Blue Color), are plotted together as 
displayed in fig. 3. The figure illustrates that the estimated 
output of proposed algorithm is almost identical to the actual 
output and the residual is very close to zero. Now, assuming 

the fault has been happened during time1000 1600k  , in 

order to show the model capability and examine the LDA 
efficiency for dimension reduction. Once the fault has been 
occurred, Changes will be made to the system's parameters 
and new assumptions of parameters have been made as:

   ˆ ˆ( ) 0.82,0.91,0.74,0.62,0.71,0.88 , ( ) 0.85,0.95
T T

s nk k    

 

Fig. 3. The true output, the estimated output, and the residual. 

These system parameters not provide the same level of 
informational value.  

 

Fig. 4. two dimensions space for normal situation and faulty situation 

 Thus, dimension reduction is essential to select the 
parameters with the best system information, the parameters 
dimension reduction from n = 6 to m = 2 has been achieved. 
Fig.4 illustrates the reduced dimensions m = 2 for normal 
mode and faulty mode.The figure shows that the separations 
between two classes is very obvious. Fig. 5 illustrates the 
classification between these two classes e using Naive Bayes 
Classifier and the figure demonstrates that the Naive Bayes 
Classifier is very effective.  

 

Fig. 5. The classification between fault-free mode and faulty mode 

based on Naive Bayes Classifier 

VII. CONCUSIONS 

In this work, Multi stage RLS algorithm has been derived. 
The validation of this model has been done based on mean 
bias error, the result shows this model is very effective. The 
estimation of the system parameters in both normal and faulty 
situations have been achieved as well as the dimension 
reduction of these parameters has been done in order to obtain 
their best important features utilizing LDA. The classification 
between these reduced classes has been performed using the 
Naive Bayes classifier. Finally, capability of this approach 
has been demonstrated with simulated data. 
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